Week 10 - Wednesday

## **COMP 4290**

#### Last time

- Finished network vulnerabilities
- Network security controls
- Firewalls

## Questions?

# Project 3

### **Aidan Kent Presents**

### Intrusion Detection

#### Intrusion detection

- Firewalls and authentication mechanisms are supposed to prevent malicious attacks
- Not all attacks can be prevented
  - But it's still useful to know when they are happening
- An intrusion detection system (IDS) is hardware or software that monitors activity to look for suspicious patterns
- A network-based IDS is stand-alone hardware that monitors a whole network
- A host-based IDS runs on a host to protect that host

### Types of IDSs

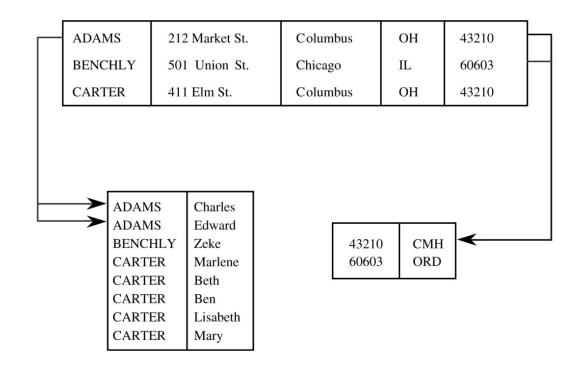
- Signature-based IDSs do pattern matching, looking for patterns of known malicious behavior
  - Only works for known types of attacks
- Heuristic (or anomaly based) IDSs build up a model of acceptable behavior
  - If something doesn't fit the model, an alarm is raised
  - An example is a particular user who has a characteristic way of typing that suddenly changes
- State-based IDSs try to see when the system is in an unsafe state
- Model-based IDSs try to model unacceptable activity and react when activity looks like the model
- Misuse intrusion detection is like model-based except that the model is known bad behavior

### **IDS** operation

- Many IDSs are configured in stealth mode
  - They cannot send messages on the network they are monitoring
  - Alarms are sent through some alternate means
- Responding to alarms
  - Monitor data
  - Change system settings to protect it
  - Alert a human being
- Because they are often statistical, an IDS can have false positives and false negatives
  - Both are problematic

## Database Background

#### What is a database?


- A database is a collection of data and a set of rules to organize the data by relationships
- A database administrator makes the rules and controls access
- A database management system (DBMS) is the program through which the user interacts with the database

#### Database components

- Most modern databases use the relational database model
  - The fundamental unit of organization is a table
  - An older format for databases was hierarchical, like a tree
- A table consists of records
- A record consists fields or elements, which are each a specific item of data

#### **Schemas**

- The tables in a database are usually related to each other in some way
- The logical structure of a database is called a schema
- A user may only see part of it, called a subschema
- An attribute is the name of a column
- A relation is a set of columns



#### Queries

- A query is the name of a command given to a database by a user
- Queries can:
  - Retrieve
  - Modify
  - Add
  - Delete
- Most databases allow commands to be issued through a variant of SQL

## Table example

#### Table CLIENTS

| Name    | First    | Address        | City     | State | Zip   | Airport |
|---------|----------|----------------|----------|-------|-------|---------|
| ADAMS   | Charles  | 212 Market St. | Columbus | ОН    | 43210 | CMH     |
| ADAMS   | Edward   | 212 Market St. | Columbus | ОН    | 43210 | CMH     |
| BENCHLY | Zeke     | 501 Union St.  | Chicago  | IL    | 60603 | ORD     |
| CARTER  | Marlene  | 411 Elm St.    | Columbus | ОН    | 43210 | CMH     |
| CARTER  | Beth     | 411 Elm St.    | Columbus | ОН    | 43210 | CMH     |
| CARTER  | Ben      | 411 Elm St.    | Columbus | ОН    | 43210 | CMH     |
| CARTER  | Lisabeth | 411 Elm St.    | Columbus | ОН    | 43210 | CMH     |
| CARTER  | Mary     | 411 Elm St.    | Columbus | ОН    | 43210 | CMH     |

### Query example

Query:

SELECT \* FROM CLIENTS WHERE FIRST="BEN" OR CITY="CHICAGO"

| Name    | First | Address       | City     | State | Zip   | Airport |
|---------|-------|---------------|----------|-------|-------|---------|
| BENCHLY | Zeke  | 501 Union St. | Chicago  | IL    | 60603 | ORD     |
| CARTER  | Ben   | 411 Elm St.   | Columbus | ОН    | 43210 | CMH     |

#### Database advantages

- Databases have many advantages:
  - Shared access for many users
  - Minimal redundancy so that space is used efficiently
  - Data integrity with rules that protect relationships
  - Controlled access with authorized users
- Databases have also been heavily optimized for speed
- Users don't need to know anything about the actual physical layout of the database on disk

## Database Security Requirements

## Database security requirements

- Because they are a central part of modern business, several aspects of database security are crucial:
  - Physical database integrity
  - Logical database integrity
  - Element integrity
  - Access control
  - User authentication
  - Availability

### Database integrity

- Physical database integrity
  - What happens in a power failure?
  - Disk drives fail all the time
- Regular backups are necessary
- Google and Amazon offer distributed database services
- Transaction logs should be kept

### **Element integrity**

- The integrity of an individual element is its correctness or accuracy
- Field checks make sure that data values fall within appropriate ranges or have the right types
  - Usually these checks are done as data is being entered
- Access control is key
  - Partly to protect data from malicious users
  - Partly to avoid situations where two users update information at the same time, leading to inconsistency
- A change log keeps track of all changes, allowing for an undo of mistaken updates

### Auditability

- Like with OS logs, we want to be able to keep track of who has accessed the database
- Similarly, the log can become very long
- Should we record when a user has indirectly accessed a value through a SELECT statement?
  - This is called the pass-through problem

#### Access control and authentication

- Managing access control for a database is very difficult
  - Many systems allow for very fine-grained control
  - But some human has to assign all the privileges
- Worse, giving a person access to some data but not others might not be enough
- Some queries can leak information about hidden data
  - Getting this data is called inference
- Most DBMSs are separate from the OS
  - Since there is no trusted path, the DBMS must do its own authentication

### Availability

- Availability is another challenge for a DBMS
- Since these systems make the world work, everyone notices when they go down
- If a field is not available to user A while user B is editing it, user
  A may have to wait an unacceptable amount of time
- To avoid inference, data that should be publicly known might be unreasonably hidden
- CIA all come together in DBMSs

## Database Reliability and Integrity

### Reliability and integrity

- Reliability is a measure of how long a software system can run without failing
  - Reliability is often quoted in terms of uptime percentage
  - Or mean time between failures
- Database reliability and integrity has three aspects:
  - Database integrity
    - Is the database as a whole protected from disk failure or corruption
  - Element integrity
    - Are only authorized users allowed to change elements
  - Element accuracy
    - Are the values in the elements correct

### Two-phase update

- A key problem for database integrity is what happens if the system fails in the middle of an update
  - Then the database is inconsistent
- A two-phase update is a common solution
  - During the intent phase, the DBMS computes the results needed for the update, but does not change the database
  - During the commit phase, it changes all of the fields to the values computed in the intent phase
  - If the intent phase fails, the DBMS can start over from the beginning
  - If the commit phase fails, the DBMS can try to write all the data from the intent phase again

### Two-phase example part 1

- Avon and Stringer use a database to organize their heroin distribution cartel
  - Assume that they have 1483 doses in their warehouse
- If a request for a re-up for 100 WMD's comes from the Pit's crew chief, the following steps happen:
- 1. They check the warehouse to see if they have enough, otherwise the request is postponed
- If they have enough, they remove 100 from the warehouse (1483 100 = 1383)
- 3. They add 100 doses to the crew chief's sheet of product
  - If the crew chief is more than 1000 doses behind on payment, he is shot
- If the warehouse's quantity on hand (1383) is below 500, an order is made to the Greek importers for another heroin shipment
- 5. The re-up delivery to the Pit is made

#### **Problems**

- If the steps are not correctly carried out in order, bad things happen
- Imagine a failure in the process
  - If 100 is removed from the warehouse inventory field and the process fails,
    the accounting for the warehouse is off
  - If repeated failures cause 100 doses to be added to the crew chief's sheet several times without a delivery, he might get shot
- In the two-phase system, we use shadow values to keep track of changes
- When the process has finished, we write the list of shadow values

#### Two-phase example part 2

- To make the protocol robust to failure, we use the following intent phase:
- 1. Check the COMMIT-FLAG, if true, return failure or wait until false
- Check the warehouse to see if they have enough, otherwise the request is postponed
- Compute TDOSES = ONHAND REQUESTED
- 4. Compute TSHEET = SHEET + REQUESTED
- If TSHEET > 1000, set TKILLCHIEF = true, otherwise set TKILLCHIEF = false
- 6. If TDOSES < 500, set TREORDER = true, otherwise set TREORDER = false

### Two-phase example part 3

- This is the corresponding commit phase:
- 1. Set the COMMIT-FLAG in the database
- 2. Set ONHAND = TDOSES
- 3. Set SHEET = TSHEET
- 4. Set KILLCHIEF = TKILLCHIEF
- 5. Set REORDER = TREORDER
- 6. Unset COMMIT-FLAG
- When finished, make the delivery

### Redundancy

- DBMSs often keep information for error correction and detection:
  - Parity bits
  - Hamming codes
  - Cyclic redundancy checks
- Shadow fields (like the ones used in two-phase updates) can be used to replicate individual fields or entire records
- Because events are also logged, it should be possible to reconstruct the database from a backup based on the log data

#### Concurrency

- Most database systems allow more than one user or process to access it at the same time
- Updates must be controlled to avoid race conditions
  - Race conditions are sequences of commands that result in different states depending on timing
  - If there is one ticket left to a Bad Bunny concert, it should be impossible for two people to buy it
- Commands that both query (is there a ticket remaining) and update (buy the ticket) should be executed atomically
- Reading data also needs to be protected
  - If a user is writing data, it should be locked so that it can't be read

#### Constraints

- A monitor is the part of the DBMS responsible for structural integrity
- Range comparisons check newly entered numerical data for sanity
- Filters or patterns can be arbitrarily complex to make sure that a zip code or a VIN is correctly formatted
- The job of a DBA is to set these up, as well as the more complex state and transition constraints

#### State and transition constraints

- A state constraint is a characteristic that should be invariant over the database
  - Only one person is labeled president
  - Only one table has a given name
  - If such a constraint is violated, something has gone wrong in the database
- A transition constraint must be met before certain changes can be made to the database
  - A vacant position has to be listed before a new employee can be added
  - A student record must exist before that student's ID can be added to a class

## Upcoming

#### Next time...

- Database disclosure
- Database inference
- Big data and data mining
- Nfaly Toure presents

#### Reminders

- Read Sections 7.3 through 7.5
- Work on Project 3
  - User names and passwords need to be turned in next Friday in class